生化处理从弄明白这24个问题开始
废水的生化处理是什么?
它废水处理系统中***重要的过程之一,也叫生化处理。生化处理是利用微生物的生命活动过程将废水中可溶性的***物及部分不溶性的***物去除,使水得到净化。
在***的河流中,本身***有着大量的、依靠***物生活的微生物,它们日日夜夜地将人们排入河流中的***物(如工业废水、农药化肥、粪便等等***物质)氧化或还原,***终转化为无机物质。
废水的生化处理则是在人工条件下对这一过程进行强化。人们将无以计数的微生物全部集中在一个池子内,创造一个非常适合微生物繁殖、生长的环境(如温度、pH值、氧气、氮磷等营养物质),使微生物大量增殖,以提高其分解***物的速度和效率。然后再往池内泵入废水,使废水中的***物质在微生物的生命活动过程中得到氧化降解,使废水得到净化和处理。与其他处理方法相比,生化法具有能耗低、不加药、处理效果好、处理费用低等特点。
微生物是如何将废水中的***污染物分解去除掉的?
废水中存在的碳水化合物、脂肪、蛋白质等***物,这些***物***是微生物的食料,一部分降解、合成为细胞物质(组合代谢产物),另一部分降解氧化为水份,二氧化碳等(分解代谢产物),在此过程中废水中的***污染物被微生物降解去除。
如何保障微生物的***活性?
微生物除了需要营养,还需要合适的环境因素,如温度、pH值、溶解氧、渗透压等才能生存。如果环境条件不正常,会影响微生物的生命活动,甚***发生变异或死亡。
什么温度范围***适合微生物繁殖?
在废水生物处理中,微生物***适宜的温度范围一般为16-30℃,***温度在37-43℃,当温度低于10℃时,微生物将不再生长。
在适宜的温度范围内,温度每提高10℃,微生物的代谢速率会相应提高,COD的去除率也会提高10%左右;相反,温度每降低10℃,COD的去除率会降低10%,因此在冬季时,COD的生化去除率会明显低于其它季节。
微生物***适宜的pH条件应在什么范围?
微生物的生命活动、物质代谢与pH值有密切关系。大多数微生物对pH的适应范围在4.5-9,而***适宜的pH值的范围在6.5-7.5。当pH低于6.5时,真菌开始与细菌竞争,pH到4.5时,真菌在生化池内将占完全的优势,其结果是严重影响污泥的沉降结果;当pH超过9时,微生物的代谢速度将受到阻碍。
不同的微生物对pH值的适应范围要求是不一样的。在好氧生物处理中,pH可在6.5-8.5之间变化;厌氧生物处理中,微生物以pH的要求比较严格,pH应在6.7-7.4之间。
溶解氧是什么?
溶解在水体中的氧被称溶解氧。水体中的生物与好氧微生物,它们所赖以生存的氧气***是溶解氧。不同的微生物对溶解氧的要求是不一样的。好氧微生物需要供给充足的溶解氧,一般来说,溶解氧应维持在3mg/L为宜,***不应低于2mg/L;兼氧微生物要求溶解氧的范围在0.2-2.0mg/L之间;而厌氧微生物要求溶解氧的范围在0.2mg/L以下。
为什么高浓度的含盐废水对微生物的影响特别大?
微生物的单位结构是细胞,细胞壁相当于半渗透膜,在氯离子浓度小于等于2000mg/L时,细胞壁可承受的渗透压为0.5-1.0大气压,即使加上细胞壁和细胞质膜有一定的坚韧性和弹性,细胞壁可承受的渗透压也不会大于5-6大气压。但当水溶液中的氯离子浓度在5000mg/L以上时,渗透压大约将增大***10-30大气压,在这样大的渗透压下,微生物体内的水分子会大量渗透到体外溶液中,造成细胞失水而发生质壁分离,严重者微生物死亡。
在日常生活中,人们用食盐(氯化钠)腌渍蔬菜和鱼肉,灭菌防腐保存食物,***是运用了这个道理。工程经验数据表明:当废水中的氯离子浓度大于2000mg/L时,微生物的活性将受到抑止,COD去除率会明显下降;当废水中的氯离子浓度大于8000mg/L时,会造成污泥体积膨胀,水面泛出大量泡沫,微生物会相继死亡。
不过,经过长期驯化,微生物会逐渐适应在高浓度的盐水中生长繁殖。目前已经有人驯化出能够适应10000mg/L以上氯离子或硫酸根浓度的微生物。但是,渗透压的原理告诉我们,已经适应在高浓度的盐水中生长繁殖的微生物,细胞液的含盐浓度是很高的,一旦当废水中的盐分浓度较低或很低时,废水中的水分子会大量渗入微生物体内,使微生物细胞发生膨胀,严重者破裂死亡。因此,经过长期驯化并能逐渐适应在高浓度的盐水中生长繁殖的微生物,对生化进水中的盐分浓度要求始终保持在相当高的水平,不能忽高忽低,否则微生物将会大量死亡。
好氧生化处理、兼氧生化处理是什么?二者有何区别?
生化处理根据微生物生长对氧环境的要求的不同,可分为好氧生化处理与缺氧生化处理两大类,缺氧生化处理又可分为兼氧生化处理和厌氧生化处理。
在好氧生化处理过程中,好氧微生物必须在大量氧的存在下生长繁殖,并降低废水中的***物质;而兼氧生化处理过程中,兼氧微生物只需要少量氧即可生长繁殖并对废水中的***物质进行降解处理,如果水中氧太多,兼氧微生物反而生长不好从而影响它对***物质的处理效率。
兼氧微生物可适应COD浓度较高的废水,进水COD浓度可提高到2000mg/L以上,COD去除率一般在50-80%;而好氧微生物只能适应于COD浓度较低的废水,进水COD浓度一般控制在1000-1500mg/L以下,COD去除率一般在50-80%,兼氧生化处理和好氧生化处理的时间都不太长,一般都在12-24小时。
人们利用兼氧生化和好氧生化之间的差别和相同之长,将兼氧生化处理和好氧生化处理组合起来,让COD浓度较高的废水***行兼氧生化处理,再让兼氧池的处理出水作为好氧池的进水,这样的组合处理可以减少生化池的容积,既节省了环保投资又减少了日常的运行费用。
厌氧生化处理与兼氧生化处理的原理和作用是一样的。厌氧生化处理与兼氧生化处理的不同之处是:厌氧微生物繁殖生长及其对***物质降解处理的过程中不需要任何氧,而且厌氧微生物可适应更高COD浓度的废水(4000-10000mg/L)。厌氧生化处理的缺点是生化处理时间很长,废水在厌氧生化池内的停留时间一般需要40小时以上。
生物处理在废水处理工程上有哪些应用?
生物处理在废水处理工程上应用得***广泛***实用的技术有二大类:一类叫做活性污泥法,另一类叫做生物膜法。
活性污泥法是以悬浮状生物群体的生化代谢作用进行好氧的废水处理形式。微生物在生长繁殖过程中可以形成表面积较大的菌胶团,它可以大量絮凝和吸附废水的悬浮的胶体状或溶解的污染物,并将这些物质吸收入细胞体内,在氧的参与下,将这些物质完全氧化放出能量、CO2和H2O。活性污泥法的污泥浓度一般在4g/L。
而在生物膜法中,微生物附着在填料的表面,形成胶质相连的生物膜。生物膜一般呈蓬松的絮状结构,微孔较多,表面积很大,具有很强的吸附作用,有利于微生物进一步对这些被吸附的***物分解和利用。在处理过程中,水的流动和空气的搅动使生物膜表面和水不断接触,废水中的***污染物和溶解氧为生物膜所吸附,生物膜上的微生物不断分解这些***物质,在氧化分解***物质的同时,生物膜本身也不断新陈代谢,衰老的生物膜脱落下来被处理出水从生物处理设施中带出并在沉淀池中与水分离。生物膜法的污泥浓度一般在6-8g/L。
为了提高污泥浓度,进而提高处理效率,可以将活性污泥法与生物膜法结合起来,即在活性污泥池中添加填料,这种既有挂膜的微生物又有悬浮微生物的生物反应器称为复合式生物反应器,它具有很高的污泥浓度,一般在14g/L左右。
生物膜法和活性污泥法有哪些异同之处?
生物膜法和活性污泥法是以生化处理的不同反应器形式,从外观上看主要区别在于前者的微生物不需要填料载体,生物污泥是悬浮的,而后者的微生物是固定在填料上的,然而它们处理废水、净化水质的机理是一样的。另外,二者的生物污泥都是好氧活性污泥,而且污泥的组成也具有一定的相似性。此外,生物膜法中的微生物,由于是固定在填料上的,可以形成比较稳定的生态系统,其生活能量和消耗能量不象活性污泥法中的微生物那样大,因此生物膜法的剩余污泥比活性污泥法要少。
什么叫活性污泥?
从微生物角度来看,生化池中的污泥是由各种各样有生物活性的微生物组成的一个生物群体。如果把污泥的泥粒放在显微镜下观察,可以看到里面有多种微生物—细菌、霉菌、原生动物和后生动物(如轮虫、昆虫的幼虫和蠕虫等),它们构成一条食物链,细菌和霉菌能分解复杂的***化合物,获得自身活动必需的能量并构造自身。原生动物以细菌和霉菌为食,又被后生动物所消耗,后生动物也可以直接依靠细菌生活。这种充满微生物、具有降解***物能力的絮状泥粒***叫做活性污泥。
活性污泥除了由微生物组成之外,还含有一些无机物质和吸附在活性污泥上不能再被生物降解的***物(即微生物的代谢残余物)。活性污泥的含水率一般在98-99%。 活性污泥象矾花一样,具有很大的表面积,因此具有很强的吸附力和氧化分解***物的能力。
怎样评价活性污泥法与生物膜法中的活性污泥?
活性污泥法与生物膜法的活性污泥生长情况的判别和评价是不一样的。
在生物膜法中,活性污泥生长情况的评价主要采用显微镜直接观察生物相。 在活性污泥法中,评价活性污泥生长情况的评价除了直接用显微镜观察生物相外,常用的评价指标还有:混合液悬浮固体(MLSS),混合液挥发性悬浮固体(MLVSS),污泥沉降比(SV),污泥沉降指数(SVI)等。
用显微镜进行生物相观察时,那一类微生物直接表明生化处理效果良好?
微型后生动物(如轮虫、线虫等)的出现则表明微生物群落生长良好,活性污泥的生态系统比较稳定,这时候的生化处理效果***。
什么叫混合液悬浮固体(MLSS)?
混合液悬浮固体(MLSS)亦要称为污泥浓度,它是指单位体积生化池混合液所含干污泥的重量,单位为毫克/升,用来表征活性污泥浓度。它包括***物和无机物两部分。一般来说SBR生化池内MLSS值控制在2000-4000mg/L左右为宜。
什么叫混合液挥发性悬浮固体(MLVSS) ?
混合液挥发性悬浮固体(MLVSS)是指单位体积生化池混合液所含干污泥中可挥发性物质的重量,单位也是毫克/升,由于它不包括活性污泥中的无机物,因此能较确切地代表活性污泥中微生物的数量。
污泥沉降比(SV) ?
污泥沉降比(SV)是指曝气池内混合液在100毫升量筒中,静止沉淀30分钟后,沉淀污泥与混合液之体积比(%),因此有时也用SV30来表示。一般来说生化池内的SV在20-40%之间。污泥沉降比测定比较简单,是评定活性污泥的重要指标之一,它常被用于控制剩余污泥的排放和及时反时污泥膨胀等异常现象。显然,SV与污泥浓度也有关系。
污泥指数(SVI)
污泥指数(SVI)全称污泥容积指数,1克干污泥在湿态时所占体积的毫升数,其计算公式如下为:
SVI=SV*10/MLSS
SVI剔除了污泥浓度因素的影响,更能反映活性污泥凝聚性和沉降性,一般认为:
当60<SVI<100时, 污泥沉降性能好
当100<SVI<200时, 污泥沉降性能一般
当200<SVI<300时, 污泥由膨胀的趋势
当SVI>300时, 污泥已膨胀
溶解氧(DO)表示什么?
溶解氧(DO)表示水中氧的溶解量,单位用mg/L表示。不同的生化处理方式对溶解氧的要求也不同,在兼氧生化过程中,水中的溶解氧一般在0.2-2.0mg/L之间,而在SBR好氧生化过程中,水中的溶解氧一般在2.0-8.0mg/L之间。
因此,兼氧池操作时曝气量要小,曝气时间要短;而在SBR好氧池操作时,曝气量和曝气时间要大得多和长得多,而我们用的是接触氧化,溶解氧控制在2.0-4.0mg/L。
废水中溶解氧的含量与哪些因素有关?
水中溶解氧的浓度可以用Henry定律来表示:当达到溶解平衡时:C=KH*P 【其中:C为溶解平衡时水中氧的溶解度; P为气相中氧的分压;KH为Henry系数,与温度有关】
增加曝气努力使氧的溶解接近平衡,而同时活性污泥还会消耗水中的氧。因此废水中实际溶解氧量与水温、***水深(影响压力)、曝气量、污泥浓度、盐度等因素有关。
生化过程中微生物所需的氧气由谁提供?
罗茨风机
在生化过程中为什么需要经常补充废水中的营养物?
利用生化过程去除污染物的方法,主要是利用微生物的新陈代谢过程,而微生物的细胞合成等生命过程均需要有足够量和种类营养物质(包括微量元素)。对于化工类废水来说,由于生产产品的单一性,因此废水水质的组成的成分也较为单一,缺乏微生物必要的营养物质,因此为了满足微生物新陈代谢需要,必须添加废水中营养。这***像人在吃米饭、面粉的同时,还要摄入足够量的维生素一样。
废水中微生物所需的各营养元素之间的比例为多少?
好氧生化: C:N:P=100:5:1(重量比)。【碳(C)、氮(N)、和磷(P)】
为什么会有剩余污泥产生?
在生化处理过程中,活性污泥中的微生物不断地消耗着废水中的***物质。被消耗的***物质中,一部分***物质被氧化以提供微生物生命活动所需的能量,另一部分***物质则被微生物利用以合成新的细胞质,从而使微生物繁衍生殖,微生物在新陈代谢的同时,又有一部分老的微生物死亡,故产生了剩余污泥。
怎样估算剩余污泥的产生量?
在微生物的新陈代谢过程中,部分***物质(BOD)被微生物利用合成了新的细胞质以替代死亡了的微生物。因此,剩余污泥的产生量配被分解了的BOD数量有关,两者之间是有关联的。 工程设计时,一般都考虑每处理一公斤BOD5,产生0.6-0.8公斤的剩余污泥(***),折算成含水率为80%的干污泥则为3-4公斤。